Computer Science Major Concentration (B.A.) (36 credits)
Offered by: Computer Science (Faculty of Science)
Degree: Bachelor of Arts; Bachelor of Arts and Science
Program credit weight: 36
Program Description
This Major concentration represents an in-depth introduction to computer science and its sub-areas. Students that are interested in further study in Computer Science can combine the Major Concentration Computer Science with the Supplementary Minor in Computer Science to constitute a program very close to the Major Computer Science offered by the Faculty of Science. For further information, please consult the Program Adviser.
Students with two programs in the same department/unit must have a third program in a different department/unit to be eligible to graduate. Please refer to the Faculty of Arts regulations for "Faculty Degree Requirements," "About Program Requirements," and "Departmental Programs" for the Multi-track System options.
Degree Requirements — B.A. students
To be eligible for a B.A. degree, a student must fulfil all Faculty and program requirements as indicated in Degree Requirements for the Faculty of Arts.
We recommend that students consult an Arts OASIS advisor for degree planning.
Degree Requirements — B.A. & Sc. students
This program is offered as part of a Bachelor of Arts & Science (B.A. & Sc.) degree.
To graduate, students must satisfy both their program requirements and their degree requirements.
- The program requirements (i.e., the specific courses that make up this program) are listed under the Course Tab (above).
- The degree requirements—including the mandatory Foundation program, appropriate degree structure, and any additional components—are outlined on the Degree Requirements page.
Students are responsible for ensuring that this program fits within the overall structure of their degree and that all degree requirements are met. Consult the Degree Planning Guide on the SOUSA website for additional guidance.
Note: For information about Fall 2025 and Winter 2026 course offerings, please check back on May 8, 2025. Until then, the "Terms offered" field will appear blank for most courses while the class schedule is being finalized.
Note: For information about Fall 2025 and Winter 2026 course offerings, please check back on May 8, 2025. Until then, the "Terms offered" field will appear blank for most courses while the class schedule is being finalized.
Required Courses (18 credits)
MATH 133 Linear Algebra and Geometry., MATH 140 Calculus 1., and MATH 141 Calculus 2. (or their equivalents) should be completed prior to taking courses in this program.
Course | Title | Credits |
---|---|---|
COMP 202 | Foundations of Programming. 1 | 3 |
Foundations of Programming. Terms offered: Summer 2025 Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics. | ||
COMP 206 | Introduction to Software Systems. | 3 |
Introduction to Software Systems. Terms offered: this course is not currently offered. Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems. | ||
COMP 250 | Introduction to Computer Science. | 3 |
Introduction to Computer Science. Terms offered: this course is not currently offered. Mathematical tools (binary numbers, induction,recurrence relations, asymptotic complexity,establishing correctness of programs). Datastructures (arrays, stacks, queues, linked lists,trees, binary trees, binary search trees, heaps,hash tables). Recursive and non-recursivealgorithms (searching and sorting, tree andgraph traversal). Abstract data types. Objectoriented programming in Java (classes andobjects, interfaces, inheritance). Selected topics. | ||
COMP 251 | Algorithms and Data Structures. | 3 |
Algorithms and Data Structures. Terms offered: this course is not currently offered. Data Structures: priority queues, balanced binary search trees, hash tables, graphs. Algorithms: topological sort, connected components, shortest paths, minimum spanning trees, bipartite matching, network flows. Algorithm design: greedy, divide and conquer, dynamic programming, randomization. Mathematicaltools: proofs of asymptotic complexity and program correctness, Master theorem. | ||
COMP 273 | Introduction to Computer Systems. | 3 |
Introduction to Computer Systems. Terms offered: this course is not currently offered. Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining. | ||
MATH 240 | Discrete Structures. | 3 |
Discrete Structures. Terms offered: this course is not currently offered. Introduction to discrete mathematics and applications. Logical reasoning and methods of proof. Elementary number theory and cryptography: prime numbers, modular equations, RSA encryption. Combinatorics: basic enumeration, combinatorial methods, recurrence equations. Graph theory: trees, cycles, planar graphs. |
- 1
Students who have sufficient knowledge in programming do not need to take COMP 202 Foundations of Programming. and should replace it with an additional computer science complementary course.
Complementary Courses (18 credits)
18 credits selected as follows:
3 credits from each of the groups A, B, C, and D:
Group A
Course | Title | Credits |
---|---|---|
MATH 222 | Calculus 3. | 3 |
Calculus 3. Terms offered: Summer 2025 Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals. | ||
MATH 323 | Probability. | 3 |
Probability. Terms offered: Summer 2025 Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem. | ||
MATH 324 | Statistics. | 3 |
Statistics. Terms offered: this course is not currently offered. Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference. |
Group B
Course | Title | Credits |
---|---|---|
MATH 223 | Linear Algebra. | 3 |
Linear Algebra. Terms offered: this course is not currently offered. Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications. | ||
MATH 318 | Mathematical Logic. | 3 |
Mathematical Logic. Terms offered: this course is not currently offered. Propositional logic: truth-tables, formal proof systems, completeness and compactness theorems, Boolean algebras; first-order logic: formal proofs, Gödel's completeness theorem; axiomatic theories; set theory; Cantor's theorem, axiom of choice and Zorn's lemma, Peano arithmetic; Gödel's incompleteness theorem. | ||
MATH 340 | Discrete Mathematics. | 3 |
Discrete Mathematics. Terms offered: this course is not currently offered. Discrete Mathematics and applications. Graph Theory: matchings, planarity, and colouring. Discrete probability. Combinatorics: enumeration, combinatorial techniques and proofs. |
Group C
Course | Title | Credits |
---|---|---|
COMP 330 | Theory of Computation. | 3 |
Theory of Computation. Terms offered: this course is not currently offered. Finite automata, regular languages, context-free languages, push-down automata, models of computation, computability theory, undecidability, reduction techniques. | ||
COMP 350 | Numerical Computing. | 3 |
Numerical Computing. Terms offered: this course is not currently offered. Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations. | ||
COMP 360 | Algorithm Design. | 3 |
Algorithm Design. Terms offered: this course is not currently offered. Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques. |
Group D
Course | Title | Credits |
---|---|---|
COMP 302 | Programming Languages and Paradigms. | 3 |
Programming Languages and Paradigms. Terms offered: this course is not currently offered. Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming. | ||
COMP 303 | Software Design. | 3 |
Software Design. Terms offered: this course is not currently offered. Principles, mechanisms, techniques, and tools for object-oriented software design and its implementation, including encapsulation, design patterns, and unit testing. |
An additional 3 credits may be selected from Group A or B.
The remaining complementary credits must be selected from COMP 230 Logic and Computability. and COMP courses at the 300 level or above (except COMP 364 Computer Tools for Life Sciences., COMP 396 Undergraduate Research Project.).