Sustainability in Engineering and Design (Non-Thesis) (M.Eng.) (45 credits)
Offered by: Trottier Inst Sust,Eng&Design (Faculty of Engineering)
Degree: Master of Engineering
Program credit weight: 45
Program Description
The Master of Engineering in Sustainability in Engineering and Design; Non-Thesis, focuses on the critical sustainability challenges of the 21st century. The program provides students with the opportunity to apply systems-based frameworks and sustainability metrics to analyze problems and design solutions for sustainability in engineering and design. It provides an interdisciplinary working environment for those working on sustainability.
Note: For information about Fall 2025 and Winter 2026 course offerings, please check back on May 8, 2025. Until then, the "Terms offered" field will appear blank for most courses while the class schedule is being finalized.
Required Courses (27 credits)
Course | Title | Credits |
---|---|---|
SEAD 500 | Foundations of Sustainability for Engineering and Design. | 3 |
Foundations of Sustainability for Engineering and Design. Terms offered: this course is not currently offered. Perspectives and debates from different disciplines and fields on sustainability and how it may be conceptualized, operationalized and evaluated; its implications for problem formulation and policy analysis, ethical considerations and strategies of implementation related to engineering and design; the need for integrating multiple perspectives and dimensions; stakeholder perspectives. | ||
SEAD 510 | Energy Analysis. | 4 |
Energy Analysis. Terms offered: this course is not currently offered. Critical analysis of the importance of energy to society, the unsustainability of the current energy system, and potential options for a sustainable energy system. Topics include: peak oil and climate change, fundamental energy metrics, traditional and alternative primary and secondary power systems, and energy storage technologies. Quantitative energy analysis is applied to a set of case studies investigating energy use, energy generation, and energy storage and transport. | ||
SEAD 520 | Life Cycle-Based Environmental Footprinting . | 3 |
Life Cycle-Based Environmental Footprinting . Terms offered: this course is not currently offered. Introduction to Life Cycle-Based Environmental Footprinting and the application of basic methods for life-cycle environmental inventory and impacts modeling. LCA theory and quantitative analysis, approaches for assessing and reducing the environmental impacts of product, process, and technology systems. System boundary and functional unit design approaches, process-based and input-output-based methods for modeling mass and energy flows in life-cycle systems. How LCA can facilitate sustainable technology innovation and deployment, behavioural and societal changes, and policies, standards and regulations. | ||
SEAD 530 | Economics for Sustainability in Engineering and Design. | 3 |
Economics for Sustainability in Engineering and Design. Terms offered: this course is not currently offered. Micro and macroeconomics of sustainability, market structures, principles of substitution, market failures and externalities, monetization and pricing of externalities. Policy instruments, permits and licenses, mandates, incentives, penalties, taxation and eco-social principles, mechanism design, the principles of life cycle analyses and the circular economy. Impact of engineering on ecological and economic sustainability. | ||
SEAD 540 | Industrial Ecology and Systems. | 3 |
Industrial Ecology and Systems. Terms offered: this course is not currently offered. Industrial ecology theory, concepts, normative goals and analytical methods. Material and energy flows, environmental impacts of industrial activities, systems thinking, transitioning from linear to closed loop systems, recent contributions to sustainable product systems, urban metabolism, optimized materials or energy management, development of a circular economy, new environmental policies and business models based on product or material lifecycle information. Consumer and organizational behaviour in transitioning to sustainable industrial systems. | ||
SEAD 550 | Decision-Making for Sustainability in Engineering and Design. | 3 |
Decision-Making for Sustainability in Engineering and Design. Terms offered: this course is not currently offered. Role and importance of engineering decisions of environmental, social, and economic problems and the application of decision-making approaches and tools to engineering sustainability. Multi-criteria decision-making, uncertainty analysis, game theory, sustainability metrics, life cycle analysis evaluation and impact assessment methodologies, design problem formulation, stage-dependent strategies, case studies. | ||
SEAD 660 | Strategies for Sustainability . | 3 |
Strategies for Sustainability . Terms offered: Fall 2025 Governance models for sustainability and their competitive market advantages, sustainability investment case studies, common misconceptions and limits of sustainability and economic theory, structural and institutional changes for sustainability, systems theory and managerial approaches, business risk and competitive strategies, sustainability and financial acumen, communicating sustainability performance metrics in business. | ||
SEAD 670 | Collaborative Design for Sustainability. | 3 |
Collaborative Design for Sustainability. Terms offered: Fall 2025 Team project designing an improved product or service, as measured by a range of sustainable design and economic criteria. |
Complementary Courses (18 credits)
Students will take 12 to 18 credits from courses in one or two streams:
Stream 1 - Sustainable Processes and Manufacturing
Course | Title | Credits |
---|---|---|
CHEE 511 | Catalysis for Sustainable Fuels and Chemicals. | 3 |
Catalysis for Sustainable Fuels and Chemicals. Terms offered: this course is not currently offered. Introduction to catalytic processes for the production of sustainable fuels and chemicals. Topics: From fossil fuel to renewable fuel. Syngas vs. platform route. Biomass upgrading. Renewable natural gas. CO2 as chemical building block. Theory of photo- and electro-catalysis. | ||
CHEE 521 | Nanomaterials and the Aquatic Environment. 1 | 3 |
Nanomaterials and the Aquatic Environment. Terms offered: this course is not currently offered. Environmental impacts and applications of nanomaterials. Topics: physicochemical characterization of nanoparticles in aquatic media, colloid chemistry for understanding nanoparticle aggregation and mobility in the environment, mechanisms of reactive oxygen species (ROS) production by nanomaterials, nanomaterials for environmental remediation and water treatment, methodologies for assessing nanoparticle toxicity, novel research developments. | ||
CIVE 521 | Nanomaterials and the Aquatic Environment. 1 | 3 |
Nanomaterials and the Aquatic Environment. Terms offered: this course is not currently offered. Environmental impacts and applications of nanomaterials. Topics: physicochemical characterization of nanoparticles in aquatic media, colloid chemistry for understanding nanoparticle aggregation and mobility in the environment, mechanisms of reactive oxygen species (ROS) production by nanomaterials, nanomaterials for environmental remediation and water treatment, methodologies for assessing nanoparticle toxicity, novel research developments. | ||
CIVE 663 | Environmental Fate of Organic Chemicals. | 4 |
Environmental Fate of Organic Chemicals. Terms offered: this course is not currently offered. Theoretical and applied environmental organic chemistry concerning organic pollutants in aquatic and soil systems. Topics include: vapour pressure; activity coefficient and aqueous solubility; air-liquid phase partitioning; sorption; bioaccumulation and biomagnification; hydrolysis and nucleophilic substitution reactions; redox reactions; legacy pollutants; pollutants of emerging concern; novel research developments. | ||
CIVE 677 | Water-Energy Sustainability. | 4 |
Water-Energy Sustainability. Terms offered: this course is not currently offered. Sustainable water resources management: water requirements and frameworks for allocations for agriculture, urbanization, resource extraction, energy production and the environment. Analysis and modelling of the constraints and implications, within and across sectors, of water allocation and energy production choices and their climate change impacts. Critical assessment of contemporary case studies related to the water-energy nexus | ||
MECH 534 | Air Pollution Engineering. | 3 |
Air Pollution Engineering. Terms offered: this course is not currently offered. Pollutants from power production and their effects on the environment. Mechanisms of pollutant formation in combustion. Photochemical pollutants and smog, atmospheric dispersion. Pollutant generation from internal combustion engines and stationary power plants. Methods of pollution control (exhaust gas treatment, absorption, filtration, scrubbers, etc.). | ||
MECH 560 | Eco-design and Product Life Cycle Assessment . | 3 |
Eco-design and Product Life Cycle Assessment . Terms offered: this course is not currently offered. Fundamentals of both product and process engineering with an emphasis on life cycle models and sustainability. Practical and theoretical topics, methodologies, principles, and techniques. Practical methods such as Life Cycle Analysis, eco-design strategies, streamlined Life Cycle Assessment, environmental impact assessment, and Life Cycle Engineering. Introduction to important product development theories and life cycle assessment theories. | ||
MIME 511 | Advanced Subsurface Ventilation and Air Conditioning. | 3 |
Advanced Subsurface Ventilation and Air Conditioning. Terms offered: this course is not currently offered. Fundamentals of air flow in underground mines. Thermodynamics of mine ventilation. Gases, dust, fire and Radon control. Thermal comfort. Mine heat transfer. Refrigeration systems, Ventilation-on-Demand. Optimization of mine ventilation design. | ||
MIME 588 | Reliability Analysis of Mining Systems. | 3 |
Reliability Analysis of Mining Systems. Terms offered: Summer 2025 Statistics and probability theory used in reliability. Reliability analysis, measure and networks. Reliability prediction, modelling and testing. Concepts of preventive and corrective maintenance. Reliability based maintenance. Control and management of reliability systems. Quality and safety associated with maintenance analysis. Inventory control. Reliability based optimization. | ||
URBP 506 | Environmental Policy and Planning. | 3 |
Environmental Policy and Planning. Terms offered: this course is not currently offered. Analytical and institutional approaches for understanding and addressing environmental issues at various scales; characteristics of environmental issues, science-policy-politics interactions relating to the environment, and implications for policy; sustainability, and the need for and challenges associated with interdisciplinary perspectives; externalities and their regulation; public goods; risk perception and implications; the political-institutional context and policy instruments; cost-benefit analysis; multiple-criteria decision-making approaches; multidimensional life-cycle analysis; policy implementation issues; conflict resolution; case studies. |
- 1
Students can take only one of CHEE 521 Nanomaterials and the Aquatic Environment. or CIVE 521 Nanomaterials and the Aquatic Environment.
Stream 2 - Renewable Energy and Energy Efficiency
Course | Title | Credits |
---|---|---|
CHEE 511 | Catalysis for Sustainable Fuels and Chemicals. | 3 |
Catalysis for Sustainable Fuels and Chemicals. Terms offered: this course is not currently offered. Introduction to catalytic processes for the production of sustainable fuels and chemicals. Topics: From fossil fuel to renewable fuel. Syngas vs. platform route. Biomass upgrading. Renewable natural gas. CO2 as chemical building block. Theory of photo- and electro-catalysis. | ||
CIVE 677 | Water-Energy Sustainability. | 4 |
Water-Energy Sustainability. Terms offered: this course is not currently offered. Sustainable water resources management: water requirements and frameworks for allocations for agriculture, urbanization, resource extraction, energy production and the environment. Analysis and modelling of the constraints and implications, within and across sectors, of water allocation and energy production choices and their climate change impacts. Critical assessment of contemporary case studies related to the water-energy nexus | ||
ECSE 562 | Low-Carbon Power Generation Engineering. | 4 |
Low-Carbon Power Generation Engineering. Terms offered: this course is not currently offered. Primary energy resources, thermodynamics of power generation, conventional and renewable. Electric power generation principles. Rotating and static power conversion, frequency and voltage control. Synchronous and induction generators, design and operation, grid integration requirements. Static power converter interfaces, principles and operation. Wind and solar generation principles, control, wind and solar farms. Energy storage technologies and their role in low-carbon power systems. Operations and planning of low-carbon power generation systems. Renewable integration studies. | ||
MECH 534 | Air Pollution Engineering. | 3 |
Air Pollution Engineering. Terms offered: this course is not currently offered. Pollutants from power production and their effects on the environment. Mechanisms of pollutant formation in combustion. Photochemical pollutants and smog, atmospheric dispersion. Pollutant generation from internal combustion engines and stationary power plants. Methods of pollution control (exhaust gas treatment, absorption, filtration, scrubbers, etc.). |
Stream 3 - Sustainable Urban Development
Course | Title | Credits |
---|---|---|
ARCH 515 | Sustainable Design. | 3 |
Sustainable Design. Terms offered: this course is not currently offered. This course will address sustainable design theory and applications in the built environment with students from a variety of fields (architecture, urban planning, engineering, sociology, environmental studies, economics, international studies). Architecture will provide the focus for environmental, socio-cultural and economic issues. | ||
ARCH 517 | Sustainable Residential Development. | 3 |
Sustainable Residential Development. Terms offered: this course is not currently offered. Design strategies of sustainable residential environments at the community and the unit levels. Historic references, siting principles, high density, healthy developments, green homes, urban renewal, circulation and parking, open spaces and implementation approaches. | ||
ARCH 564 | Design for Development. | 3 |
Design for Development. Terms offered: this course is not currently offered. Designing for sustainable development to meet broad developmental goals. Innovative design approaches, strategies and projects to address these objectives via economic empowerment, food security, gender equity, health, sanitation, climate-change preparedness, and shelter-sector engagements. | ||
MECH 534 | Air Pollution Engineering. | 3 |
Air Pollution Engineering. Terms offered: this course is not currently offered. Pollutants from power production and their effects on the environment. Mechanisms of pollutant formation in combustion. Photochemical pollutants and smog, atmospheric dispersion. Pollutant generation from internal combustion engines and stationary power plants. Methods of pollution control (exhaust gas treatment, absorption, filtration, scrubbers, etc.). | ||
URBP 504 | Planning for Active Transportation. | 3 |
Planning for Active Transportation. Terms offered: this course is not currently offered. The importance of transit, walking, and cycling as modes of transportation in sustainable urban environments. Planning, design, and operation of mass transit systems, bikeways, and footpaths. | ||
URBP 551 | Urban Design and Planning. | 3 |
Urban Design and Planning. Terms offered: this course is not currently offered. Fundamentals of city-building in Canada relative to municipal, regional, and provincial actions used to guide urban growth and development. Contemporary urban design in major metropolitan centres as shaped by legal, political, and cultural realities. Current preoccupations in city-building: reurbanisation and adaptive reuse of infrastructure, collaborative multi-stakeholder projects, strategic initiatives, changing relationships between professional experts and grassroots actors. Introduction to specific aspects of practice: public participation and community engagement; land development and real estate; project feasibility and implementation; policy monitoring and evaluation; emergent city-building regimes. | ||
URBP 620 | Transport Economics. | 4 |
Transport Economics. Terms offered: this course is not currently offered. Economic and financial aspects of urban transport policies and planning. Introduction to impact assessment techniques for major transport projects and policies; discussion of political debates concerning transport financing. | ||
URBP 651 | Redesigning Suburban Space. | 3 |
Redesigning Suburban Space. Terms offered: this course is not currently offered. Planning and urban design strategies for transforming suburban and exurban settings in North America to meet contemporary needs. Critical approaches to responsible practice in existing cultural landscapes. Adaptive reuse of public space, intensification, densification, transit-oriented retrofit of urban form, community-based design development. |
Stream 4 - Sustainable Infrastructure
Course | Title | Credits |
---|---|---|
ARCH 515 | Sustainable Design. | 3 |
Sustainable Design. Terms offered: this course is not currently offered. This course will address sustainable design theory and applications in the built environment with students from a variety of fields (architecture, urban planning, engineering, sociology, environmental studies, economics, international studies). Architecture will provide the focus for environmental, socio-cultural and economic issues. | ||
ARCH 564 | Design for Development. | 3 |
Design for Development. Terms offered: this course is not currently offered. Designing for sustainable development to meet broad developmental goals. Innovative design approaches, strategies and projects to address these objectives via economic empowerment, food security, gender equity, health, sanitation, climate-change preparedness, and shelter-sector engagements. | ||
CIVE 540 | Urban Transportation Planning. | 3 |
Urban Transportation Planning. Terms offered: this course is not currently offered. Process and techniques of urban transportation engineering and planning, including demand analysis framework, data collection procedures, travel demand modelling and forecasting, and cost-effectiveness framework for evaluation of project and system alternatives. | ||
CIVE 621 | Sustainable Design of Municipal Systems. | 4 |
Sustainable Design of Municipal Systems. Terms offered: this course is not currently offered. Design of water-related municipal services. Estimation of water demand and wastewater production rates, conception of sources water intake, construction and maintenance of water distribution and wastewater / stormwater collection systems, selection of pumps and pipe materials, conception of pumping stations, planning of storage, and optimization of network. Emphasis on the theory and applications of life cycle analysis and of public acceptability specific to municipal system design. | ||
CIVE 623 | Durability of Construction Materials . | 4 |
Durability of Construction Materials . Terms offered: this course is not currently offered. Durability-related deterioration mechanisms relevant to construction materials with an emphasis on promoting sustainability in the construction industry. Portland cement concrete, asphalt cement concrete, masonry, steel, wood, and fibre reinforced composites. Factors affecting durability, service life prediction, diagnosis, remediation, and protective measures. Introduction to relevant standards, specifications, guides, and design codes. | ||
CIVE 629 | Sustainable Design: Water and Wastewater Facilities . | 4 |
Sustainable Design: Water and Wastewater Facilities . Terms offered: this course is not currently offered. Design principles of drinking water and wastewater resource recovery facilities. Characteristics of water and wastewater developed in theory and through laboratory exercises. Conventional unit operations; derivation and application of process models. Emphasis on the theory and applications of life cycle analysis (LCA) specific to the design of water and wastewater treatment facilities. | ||
CIVE 652 | Bioprocesses for Wastewater Resource Recovery. | 4 |
Bioprocesses for Wastewater Resource Recovery. Terms offered: this course is not currently offered. Technologies and design approaches for reclaiming water, nutrients, carbon and energy, while achieving protection of human and environmental health in the context of enhancing sustainability. Unit processes for both wastewater and solids-handling trains. Advanced mathematical modeling to describe suspended-growth and attached-growth multispecies bioreactors for aerobic, anaerobic and phototrophic processes. Microbial diversity in different reactor conditions, and specific population metabolisms explaining important stoichiometries and kinetics. Advanced molecular microbiology techniques to document microbial diversity and dynamics. Bioreactor designs in the context of stakeholder interactions and energy efficiency. | ||
SEAD 515 | Climate Change Adaptation and Engineering Infrastructure . | 3 |
Climate Change Adaptation and Engineering Infrastructure . Terms offered: this course is not currently offered. Climate resilience and sustainability of engineering systems such as the built environment and engineering infrastructure in the context of a changing climate, possible mitigation and adaptation strategies and associated challenges and opportunities. Review of the basic principles that underpin the science of climate change; the role of global and regional climate models in predicting the behaviour of the climate system in response to different forcing scenarios, and the use of climate model outputs in support of across scale climate-resilience of various engineering systems including infrastructure systems. | ||
URBP 620 | Transport Economics. | 4 |
Transport Economics. Terms offered: this course is not currently offered. Economic and financial aspects of urban transport policies and planning. Introduction to impact assessment techniques for major transport projects and policies; discussion of political debates concerning transport financing. | ||
URBP 651 | Redesigning Suburban Space. | 3 |
Redesigning Suburban Space. Terms offered: this course is not currently offered. Planning and urban design strategies for transforming suburban and exurban settings in North America to meet contemporary needs. Critical approaches to responsible practice in existing cultural landscapes. Adaptive reuse of public space, intensification, densification, transit-oriented retrofit of urban form, community-based design development. |
Up to 6 credits from the following:
Course | Title | Credits |
---|---|---|
BIEN 520 | High Throughput Bioanalytical Devices. | 3 |
High Throughput Bioanalytical Devices. Terms offered: this course is not currently offered. Introduction to the field of high throughput screening (HTS) analytical techniques and devices used for genomics, proteomics and other "omics" approaches, as well as for diagnostics, or for more special cases, e.g., screening for biomaterials. Introduction into the motivation of HTS and its fundamental physico-chemical challenges; techniques used to design, fabricate and operate HTS devices, such as microarrays and new generation DNA screening based on nanotechnology. Specific applications: DNA, protein and diagnostic and cell and tissue arrays. | ||
BREE 518 | Ecological Engineering. | 3 |
Ecological Engineering. Terms offered: Winter 2026 Concepts and practice of ecological engineering: the planned creation or management of a community of organisms, their nonliving surroundings, and technological components to provide services. Survey of applications such as constructed wetlands, aquatic production systems, green infrastructure for urban storm water management, environmental restoration. Taught cooperatively with a parallel course at University of Nebraska-Lincoln. Online collaboration with an interdisciplinary, international team is an important component of the course. | ||
BREE 520 | Food, Fibre and Fuel Elements. | 3 |
Food, Fibre and Fuel Elements. Terms offered: Fall 2025, Winter 2026 Analysis and design incorporating the four elements required by organisms and biomass for food, fibre and fuel production (air, earth, energy, and water). Special emphasis will be placed on the demands and requirements of engineering systems to control these elements and allow optimal growth in semi-controlled and completely controlled environments. | ||
CHEE 541 | Electrochemical Engineering. | 3 |
Electrochemical Engineering. Terms offered: this course is not currently offered. Electrochemical systems: electrodes, reactors. Electrochemical stoichiometry, thermodynamics and kinetics. Mass and charge transport. Current and potential distribution in an electrochemical reactor. Electrocatalysis. Fuel cells technology. Batteries. Industrial electrochemical processes. Electrochemical sensors. Biomedical electrochemistry. Passivity, corrosion and corrosion prevention. Electrocrystalization. Experimental Methods. | ||
CHEE 543 | Plasma Engineering. | 3 |
Plasma Engineering. Terms offered: this course is not currently offered. Description of the plasma state and parameters, plasma generation methods, and of the related process control and instrumentation. Electrical breakdown in gases and a series of discharge models are covered. Plasma processing applications such as PVD, PECVD, plasma polymerisation and etching, environmental applications, nanoparticle synthesis, spraying and sterilization are treated. | ||
CIVE 550 | Water Resources Management. | 3 |
Water Resources Management. Terms offered: this course is not currently offered. State-of-the-art water resources management techniques; case studies of their application to Canadian situations; identification of major issues and problem areas; interprovincial and international river basins; implications of development alternatives; institutional arrangements for planning and development of water resources; and, legal and economic aspects. | ||
ECSE 507 | Optimization and Optimal Control. | 3 |
Optimization and Optimal Control. Terms offered: this course is not currently offered. General introduction to optimization methods including steepest descent, conjugate gradient, Newton algorithms. Generalized matrix inverses and the least squared error problem. Introduction to constrained optimality; convexity and duality; interior point methods. Introduction to dynamic optimization; existence theory, relaxed controls, the Pontryagin Maximum Principle. Sufficiency of the Maximum Principle. | ||
MECH 535 | Turbomachinery and Propulsion. | 3 |
Turbomachinery and Propulsion. Terms offered: this course is not currently offered. Introduction to propulsion: turboprops, turbofans and turbojets. Review of thermodynamic cycles. Euler turbine equation. Velocity triangles. Axial-flow compressors and pumps. Centrifugal compressors and pumps. Axial-flow turbines. Loss mechanisms. Dimensional analysis of turbomachines. Performance maps. 3-D effects. Introduction to numerical methods in turbomachines. Prediction of performance of gas turbines. | ||
MECH 559 | Engineering Systems Optimization. | 3 |
Engineering Systems Optimization. Terms offered: this course is not currently offered. Introduction to systems-oriented engineering design optimization. Emphasis on i) understanding and representing engineering systems and their structure, ii) obtaining, developing, and managing adequate computational (physics- and data-based) models for their analysis, iii) constructing appropriate design models for their synthesis, and iv) applying suitable algorithms for their numerical optimization while accounting for systems integration issues. Advanced topics such as coordination of distributed problems and non-deterministic design optimization methods. | ||
MIME 556 | Sustainable Materials Processing. | 3 |
Sustainable Materials Processing. Terms offered: this course is not currently offered. Sustainability, population and environment impact, environmental impact indicators, materials flows, enthalpy flows, the carbon cycle, materials intensity, energy intensity, global warming potential, acidification potential, FACTOR-Two, -Four and -Ten, life-cycle-inventory/assessment, end-of-pipe strategies, supply-chain and flow-sheet redesign, recycling, waste treatment and materials case studies. | ||
SEAD 600 | Sustainability Research 1. | 3 |
Sustainability Research 1. Terms offered: this course is not currently offered. Independent research work on topic(s) chosen by consultation between the student and professor. | ||
SEAD 602 | Sustainability Research 2 . | 3 |
Sustainability Research 2 . Terms offered: Fall 2025 Continuation of the independent research work. | ||
URBP 619 | Land Use and Transport Planning. | 4 |
Land Use and Transport Planning. Terms offered: this course is not currently offered. Analysis of transport and land use interactions in urban areas. Study of the impacts of transport systems on travel behaviour, residential and work location decisions, and urban form; discussion of implications for planning practice. |
NOTE: * Students must find a supervisor from a McGill engineering, urban planning or architecture program before registering for SEAD 600 Sustainability Research 1. and SEAD 602 Sustainability Research 2 ., subject to approval by the program director.
NOTE: Other unlisted 500 level or higher courses taught at McGill may be permitted, subject to approval by the program director.