Biostatistics (Thesis) (M.Sc.) (45 credits)
Offered by: Epidemiology and Biostatistics (Faculty of Medicine & Health Sciences)
Degree: Master of Science
Program credit weight: 45
Program Description
Training in statistical theory and methods, applied data analysis, scientific collaboration, communication, and report writing by coursework and thesis.
Thesis Courses (21 credits)
Course | Title | Credits |
---|---|---|
BIOS 690 | M.Sc. Thesis. | 21 |
M.Sc. Thesis. Terms offered: Fall 2025, Winter 2026 A review, appraisal of the performance, or application of, selected biostatistical methods, carried out under supervision. |
Required Courses (24 credits)
Students exempted from any of the courses listed below must replace them with complementary course credits, at the 500 level or higher, chosen in consultation with the student's academic adviser or supervisor.
Course | Title | Credits |
---|---|---|
BIOS 601 | Epidemiology: Introduction and Statistical Models. | 4 |
Epidemiology: Introduction and Statistical Models. Terms offered: Fall 2025 Examples of applications of statistics and probability in epidemiologic research. Source of epidemiologic data (surveys, experimental and non-experimental studies). Elementary data analysis for single and comparative epidemiologic parameters. | ||
BIOS 602 | Epidemiology: Regression Models. | 4 |
Epidemiology: Regression Models. Terms offered: Winter 2026 Multivariable regression models for proportions, rates and their differences/ratios; Conditional logic regression; Proportional hazards and other parametric/semi-parametric models; unmatched, nested, and self-matched case-control studies; links to Cox's method; Rate ratio estimation when "time-dependent" membership in contrasted categories. | ||
MATH 523 | Generalized Linear Models. | 4 |
Generalized Linear Models. Terms offered: Winter 2026 Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data. | ||
MATH 533 | Regression and Analysis of Variance. | 4 |
Regression and Analysis of Variance. Terms offered: Fall 2025 Multivariate normal and chi-squared distributions; quadratic forms. Multiple linear regression estimators and their properties. General linear hypothesis tests. Prediction and confidence intervals. Asymptotic properties of least squares estimators. Weighted least squares. Variable selection and regularization. Selected advanced topics in regression. Applications to experimental and observational data. | ||
MATH 556 | Mathematical Statistics 1. | 4 |
Mathematical Statistics 1. Terms offered: Fall 2025 Distribution theory, stochastic models and multivariate transformations. Families of distributions including location-scale families, exponential families, convolution families, exponential dispersion models and hierarchical models. Concentration inequalities. Characteristic functions. Convergence in probability, almost surely, in Lp and in distribution. Laws of large numbers and Central Limit Theorem. Stochastic simulation. | ||
MATH 557 | Mathematical Statistics 2. | 4 |
Mathematical Statistics 2. Terms offered: Winter 2026 Sufficiency, minimal and complete sufficiency, ancillarity. Fisher and Kullback-Leibler information. Elements of decision theory. Theory of estimation and hypothesis testing from the Bayesian and frequentist perspective. Elements of asymptotic statistics including large-sample behaviour of maximum likelihood estimators, likelihood-ratio tests, and chi-squared goodness-of-fit tests. |